Auto-Encoder Learning-Based UAV Communications for Livestock Management
نویسندگان
چکیده
The advancement in computing and telecommunication has broadened the applications of drones beyond military surveillance to other fields, such as agriculture. Livestock farming using unmanned aerial vehicle (UAV) systems requires monitoring animals on relatively large farmland. A reliable communication system between UAVs ground control station (GCS) is necessary achieve this. This paper describes learning-based strategies techniques that enable interaction data exchange a GCS. We propose deep auto-encoder UAV design framework for end-to-end communications. Simulation results show learns joint transmitter receiver mapping functions various strategies, QPSK, 8PSK, 16PSK 16QAM, without prior knowledge.
منابع مشابه
Auto-encoder Based Data Clustering
Linear or non-linear data transformations are widely used processing techniques in clustering. Usually, they are beneficial to enhancing data representation. However, if data have a complex structure, these techniques would be unsatisfying for clustering. In this paper, based on the auto-encoder network, which can learn a highly non-linear mapping function, we propose a new clustering method. V...
متن کاملDeep Auto-Encoder Based Multi-Task Learning Using Probabilistic Transcriptions
We examine a scenario where we have no access to native transcribers in the target language. This is typical of language communities that are under-resourced. However, turkers (online crowd workers) available in online marketplaces can serve as valuable alternative resources for providing transcripts in the target language. We assume that the turkers neither speak nor have any familiarity with ...
متن کاملDisentangled Variational Auto-Encoder for Semi-supervised Learning
In this paper, we develop a novel approach for semi-supervised VAE without classifier. Specifically, we propose a new model called SDVAE, which encodes the input data into disentangled representation and non-interpretable representation, then the category information is directly utilized to regularize the disentangled representation via equation constraint. To further enhance the feature learni...
متن کاملManifold Learning with Variational Auto-encoder for Medical Image Analysis
Manifold learning of medical images has been successfully used for many applications, such as segmentation, registration, and classification of clinical parameters by modeling anatomical variability. In many applications, two aspects, generative property and capturing shape variability have been considered very important[4]. In this project, we analyze brain MRI images by applying variational a...
متن کاملStructured Auto-Encoder
In this work, we present a technique that learns discriminative audio features for Music Information Retrieval (MIR). The novelty of the proposed technique is to design auto-encoders that make use of data structures to learn enhanced sparse data representations. The data structure is borrowed from the Manifold Learning field, that is data are supposed to be sampled from smooth manifolds, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Drones
سال: 2022
ISSN: ['2504-446X']
DOI: https://doi.org/10.3390/drones6100276